Model problems from nonlinear elasticity: partial regularity results
نویسندگان
چکیده
منابع مشابه
Model Problems from Nonlinear Elasticity: Partial Regularity Results
Ω |Du| + f(AdjDu) + g(detDu), where u : Ω ⊂ IR → IR, f grows like |AdjDu|p, g grows like |detDu|q and 1 < q < p < 2, is C on an open subset Ω0 of Ω such that meas(Ω \ Ω0) = 0. Such functionals naturally arise from nonlinear elasticity problems. The key point in order to obtain the partial regularity result is to establish an energy estimate of Caccioppoli type, which is based on an appropriate ...
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Partial Regularity Results in Optimal Transportation
This note describes some recent results on the regularity of optimal transport maps. As we shall see, in general optimal maps are not globally smooth, but they are so outside a “singular set” of measure zero. 1. The optimal transportation problem The optimal transportation problem, whose origin dates back to Monge [19], aims to find a way to transport a distribution of mass from one place to an...
متن کاملMore numerical experiments on linear and nonlinear elasticity problems
This presentation describes the contribution of the group at KUN to Work-packages 2 and 3 in the following directions: (1) study of the properties and the behavior of variable versus fixed preconditioners, based on the so-called separate displacement component (SDC) formulation of the linear elasticity problem; (2) solution of problems with nearly incompressible material properties, based on a ...
متن کاملBoundary Regularity of Weak Solutions to Nonlinear Elliptic Obstacle Problems
for all v∈ ={v∈W 0 (Ω), v≥ψ a.e. in Ω}. Here Ω is a bounded domain in RN (N≥2) with Lipschitz boundary, 2≤ p ≤N . A(x,ξ) :Ω×RN → RN satisfies the following conditions: (i) A is a vector valued function, the mapping x → A(x,ξ) is measurable for all ξ ∈ RN , ξ → A(x,ξ) is continuous for a.e. x ∈Ω; (ii) the homogeneity condition: A(x, tξ)= t|t|p−2A(x,ξ), t ∈ R, t = 0; (iii) the monotone inequality...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations
سال: 2007
ISSN: 1292-8119,1262-3377
DOI: 10.1051/cocv:2007007